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space of analytic functions
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MAcCKEY [2] HAas DERINED the Laplace Transform for Locally Compact
Abelian groups. In particular he obtains a correspondence between functions
defined on the group which are square integrable with respect to an expo-
nential weight function and functions analytic in a sense analogous to the
usual definition. In this paper we use that correspondence to construct
a representation of the group on a Hilbert space of the latter functions.
We also have that the analyticity does imply a number of properties akin
to analyticity for functions of several complex-variables.

NOTATION AND TERMINOLOGY

Let G be a Locally Compact Abelian group and G its character group.
It is well-known that G is also Locally Compact Abelian since G is. We
will write both G and G in multiplicative form. Denote by G, the real
valued, continuous linear functionals on G, i.e.

G = {x|x(g) realfor geG, xiscontinuous
x(gh) = x(g) + x(h) g, heG}.

A subset K < G is said to be large if 0 € K and the closed linear span of X
is G. For example, if fe L*(G) with the usual Haar measure and K is the
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set of x € G such that exp (—x(g)) f(g) € L*(G) then K, is a convex subset
of G. Further if G happens to be the reals (under addition) then G is iso-
morphic with the reals and so is G, K will be an interval containing 0 and also
K, will be large. By a theorem of Hamburger [4], pp. 245 this interval
corresponds to the strip of analyticity of the Laplace Transform of . We
shall call x an interior point of K if there exists a real number # > 1 such
that ux e K.

FUNCTIONS ON G

In this section we will only be interested in functions contained in L*(G)
but we will assume that G is fixed and it will be necessary to consider
different sets K = G so that we abuse the notation slightly as follows.
Let K be a large convex subset of G such that each point of K is an interior
point then we write

LK) = {fl, K; > K} where K, = {x| exp (—x(&) fle) e (@)}

Mackey has used the term ‘“strongly in-L2” to denote the functions for
which K is large convex, it follows that all of the members of LZ(K) are

strongly in L2 ” Wlth the seml-norms el : h

o
ufux f 11(6) exp (=) de.
L*(K) becomes a com‘pletei linear topological space and convolution is a
jointly continuous multiplication.

THE HILBERT SPACE H%(K)

G x G becomes a complex linear space if multiplication by a scalaxj' is
defined by (u + iv) (x1, x5) = (Ux; — vx,, ux, + vxy). With this multi-
plication, G x G is like the complex plane or more accurately, like finite
or infinite dimensional complex space. However it is not convenient to
consider functions defined on G x G butratheron K x G'sinceforfe L*(K),
(¥ €K x Gthe Laplace Transform of f'is

F(x, y) = [ exp (—3(2)) (7, ) /(2) dg.

G

G is used however to define analyticity using a Frechet-type derivative.
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DerNiTION 1 Let K be a large convex subset of G and x an interior point
of K, F(x, y) a complex-valued function defined on K x G. Fis said to be
analytic at x if

(l) F(x, y) = Lim F(x + uxlayx2[u]) - F(xa y)

(x1, x1) u—0 U

exists for all

(x:,x)eG@ x G

(i)  Fix,, x, is @ complex-homogeneous function of (x4, X»).

(xa[u]) (8) = exp (iux2(2))
and hence is a one parameter subgroup of G [2].

As has been shown in [3], (ii) corresponds to the Cauchy—Riemann equa-
tions. For K large convex such that each point is an interior point denote

H*K) = {FIF analytic in K x G, sulf()f |F(x, I? dy < oo}
e

CORRESPONDENCE THEOREM, [2]

F e H*(K) implies there exists fe L2(K) such that (modulo functions zero
almost everywhere)

F(x, ) = [ exp (=(2) (7, £) f(8) de-
G
Actually, Mackey’s Theorem is stronger, if instead of H*(K) we take the
class of functions analytic on K x G and in L?(G) for every x € K then there
is a 1:1 correspondence between these functions and the set L2(K).

In {4}, this author has shown that H2(K) is a Hilbert space and that the
elements are truly analytic in the sense of being infinitely differentiable in-
cluding mixed derivatives. The proofs depend on showing that the norm
topology is stronger than compact-open topology and constructing related
functions of a complex variable which are analytic if and only if the original
function was, in the sense of Definition 1.

THE GROUP REPRESENTATION
For h e G define T, acting on H?(K) as follows

T,F(x, ) = [ exp (= x(g)) (7, gh) f(e) de

G
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where f is the function in L*(K) given by the Correspondence Theorem.
From the linearity of the integral it follows easily that

TlFy + BFy) = (T, Fy) + B(T,F>).
Since G is an abelian group we have
Thl(Tth) = Thz(ThF)
= Th1‘h2F

so that T, = I and (T})~! = T}-:. The inner product determined by the
norm of H*(K) is

(Fy, Fy) = SquF1(x ») Fz(x y)dy

xekK

and therefore
(Fy, Ty-1F>) = sup J Fi(x, y) Ty 1 Fo(x, y) dy

xeK *,
G

= sup | [ [ exp (—x()) (0 &) fi(e) dg] [ exp (=) G 1 1) dt] dy

xeK 2 G

but (y, th) = (7, £) (i, &) so that (Fy, Tp-1Fs) = (T, F, F,) and hence
Tyer = (T) " = (T)*

so the representation is unitary. Also we find | IT,,F | 1 = HF{ { by straight
forward computation.

Although it is not possible in general to definepolynomialsonK x G, H*(K)
is non-empty since the characteristic functions of compact subsets of G
have Laplace transforms which are in H2(K). Questions such as the existence
of sufficiently many elements of G to separate points in G' have been answered
in [1] and [2].
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